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Some Graph Data

Figure: Graphical representation of
webpage linkage

Figure: Graphical representation of
relationships of scientific journals
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Some Graph Data

Figure: Network of collaborations
among rappers

Figure: Network of US airlines
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Biological Graph Data

Figure: Gene Regulatory Network
(GRN). The mRNA concentration
follows a dynamic process (e.g.
ODE) controlled by other related
genes.

Figure: Cell Signal Transcriptional
Network
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Biological Graph Data

Figure: Framework of GRN produced from single-cell data.
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Linking Websites

• Scoring websites by counting
number of links

• Rescoring (reweighting) by
considering the importance
of the websites
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Scoring the Pages

Ranking the webpage j by
computing rj :

rj =
∑
i→j

ri
di
, (stream equation)

where di is the out-degree of
freedom of node i
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Eigenvalue Problem

• Mr = r

• Use power method to solve for r = lim
t→∞

r(t) :

1. Initialization : r(0) = ( 1
N , . . . ,

1
N )T

2. Iteration : r(t+1) = Mr(t)

3. Stopping rule : ‖r(t+1) − r(t)‖ 6 ε.

• Random walk interpretation : r(t) = (r
(t)
i )i is a probability

distribution, where r
(t)
i represents the probability that the

explorer stays in the webpage i at time t ; he randomly choose
the next webpage according to the probability indicated by the
matrix M.

• This produces a Markov chain. And r is its stationary
distribution if M is irreducible and non-periodic by
Perron-Frobenius theory.
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Google PageRank

• To avoid spider traps (out-link absorbed by a small subset)
and dead ends (no out-link), Google introduced the random
page transition (Brin-Page,98) :

rj =
∑
i→j

β
ri
di

+ (1− β)
1

N

• A = βM + (1− β) 1
N 11

T is irreducible and non-periodic
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Community Detection

• Club organization
from individuals
(karate club)

• Collaboration network

• Social behavior of
zebra
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Centrality (Geometry of the Graph)

• Degree (or normalized by the total number of vertices) centrality : the
number of edges linking the node

• Farness and closeness centrality, harmonic Centrality
• Betweenness centrality : the number of shortest paths passing through

the current node

• Eigenvector centrality : r in PageRank
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Community Detection Algorithms

• Hierarchical clustering based algorithms :
• Girvan-Newman Algorithm
• Improved by Newman’s fast algorithm : A concept of

“modularity” Q is introduced, agglomerate the subsets by
maximizing ∆Q

• Fast Unfolding by V. D. Blondel, implemented in Gephi

Figure: Left : Girvan-Newman ; Right : Newman’s fast algorithm
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Graphs

• A set of data points {x1, . . . , xn}, similarity sij or distance dij

• Graph G = (V ,E ), where V = {vi}ni=1 with each vi
representing a sample xi

• vi and vj are connected (wij > 0) if sij > ε where ε > 0 is a
threshold ; then the edge is weighted by wij = sij

• Undirected graph wij = wji , adjacency matrix W = {wij}
• Degree of vi : di =

∑n
j=1 wij ; D = diag(d1, . . . , dn)

W =



0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 1 0 0
0 0 1 0 0 1 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0


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Similarity Graphs

• ε-neighborhood graph : vi and vj are connected if
d(xi , xj) < ε ; unweighted graph ; ε ∼ (log n/n)p ; difficult to
choose ε for data on different scales

• k-nearest neighbor graph : connect vi to vj if vj is among the
k-nearest neighbors of vi , directed graph ; connect vi and vj if
vi and vj are among the k-nearest neighbors of each other,
mutual k-nearest neighbor graph, undirected ; k ∼ log n

• Fully connected graph : connect all points with positive
similarity with each other ; model local neighborhood
relationships ; Gaussian similarity function
s(xi , xj) = exp(−‖xi − xj‖2/(2σ2)), where σ controls the
width of neighborhoods ; adjacency matrix is not sparse ; σ ∼ ε
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Similarity Graphs
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Graph Laplacian

• Unnormalized graph Laplacian : L = D −W
• Has 1 as an eigenvector corresponding to the eigenvalue 0
• Symmetric and positive definite : fTLf = 1

2

∑
i,j wij(fi − fj)

2

• Non-negative, real-valued eigenvalues 0 = λ1 6 λ2 6 · · · 6 λn
• The eigenspace of eigenvalue 0 is spanned by the indicator

vectors 1A1 , . . . , 1Ak
, where A1, . . . ,Ak are k connected

components in the graph

• Normalized graph Laplacians :
• Symmetric Laplacian : Lsym = D−1/2LD−1/2

• Random walk Laplacian : Lrw = D−1L
• Both have similar properties as L
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Spectral Clustering

• Graph cut : segment G into K clusters A1, . . . ,AK , where
Ai ⊂ V , this is equivalent to minimize the graph cut function

cut(A1, . . . ,AK ) =
1

2

K∑
k=1

W (Ak , Āk)

where W (A,B) =
∑

i∈A,j∈B wij . Trivial solution consists of a
singleton and its complement

• RatioCut : RatioCut(A1, . . . ,AK ) = 1
2

K∑
k=1

W (Ak ,Āk )
|Ak | , where |A|

is the number of vertices in A

• Normalized cut : Ncut(A1, . . . ,AK ) = 1
2

K∑
k=1

W (Ak ,Āk )
vol(Ak ) , where

vol(A) =
∑

i∈A di ; it is NP-hard
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Relaxation of RatioCut to Eigenvalue Problems with K = 2

• min
A⊂V

RatioCut(A, Ā)

• Binary vector f = (f1, . . . , fn)T as indicator function :

fi =

{√
|Ā|/|A|, if vi ∈ A

−
√
||A|/Ā|, if vi ∈ Ā

• f TLf = |V | · RatioCut(A, Ā),
n∑

i=1
fi = 0, and ‖f ‖2

2 = n

• Relax f to be real-valued : min
f ∈Rn

f TLf , subject to f ⊥ 1 and

‖f ‖2 =
√
n

• By Rayleigh-Ritz theorem, the solution f is the eigenvector
corresponding to the second smallest eigenvalue of L

• Cluster {fi}ni=1 to two groups C and C̄ : vi ∈ A if fi ∈ C , and
else vi ∈ Ā
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Relaxation of RatioCut and Ncut with general K

• RatioCut
• Binary vector hj = (h1j , . . . , hnj)

T , j = 1, . . . ,K , as indicator

function : hij =

{
1/
√
|Aj |, if vi ∈ Aj

0, otherwise

• hTj Lhj = Cut(Aj , Āj)/|Aj |, H = (h1, . . . , hK ) ∈ Rn×K ,

RatioCut(A1, . . . ,AK ) = Tr(HTLH), HTH = I
• Relax H : min

H∈Rn×K
Tr(HTLH), subject to HTH = I

• Solution : the first K eigenvectors of L as columns
• Cluster the rows of H to K groups

• Ncut
• Replacing |Aj | by vol(Aj), the same argument for the

relaxation of Ncut : min
H∈Rn×K

Tr(HTLH), subject to HTDH = I

• Solution : the first K eigenvectors of Lrw as columns
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Spectral Clustering Algorithm

• Input : Similarity matrix S ∈ Rn×n, number k of clusters

• Output : Clusters A1, . . . ,AK of indices of vertices

• Algorithm :

1. Construct a similarity graph G = (V ,E ) with weighted
adjacency matrix W

2. Compute the unnormalized graph Laplacian L or normalized
graph Laplacian Lsym or Lrw

3. Compute the first K eigenvectors U = [u1, . . . ,uK ] ∈ Rn×K

4. In the case of Lsym, normalize the rows of U to norm 1 ; for the
other two cases, skip this step

5. Let yi ∈ RK be the i-th row of U, use K-means to cluster the
point set {yi}ni=1 into clusters C1, . . . ,CK

6. Ak = {i |yi ∈ Ck}
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Mixture of 4 Gaussians on R :
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Interpretations

• Usually better than K-means
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Random Walks Point of View

• P = D−1W can be interpreted as transition matrix of a Markovian
random walk, which possesses a unique stationary distribution if the
graph is connected and non-bipartite.

• Lrw = I − P ⇒ λ(Lrw ) = 1− λ(P)

• A probability viewpoint of Ncut : for a random walk (Xt)t starting with
X0 in the stationary distribution,

Ncut(A, Ā) = P(X1 ∈ Ā|X0 ∈ A) + P(X1 ∈ A|X0 ∈ Ā).

Minimizer of Ncut gives a segmentation of the graph such that a random
walk seldom transitions between A and Ā

• Commute distance : cij measures the expected time it takes the random
walk to travel from vertex i to vertex j and back. Some better properties
than shortest path (geodesics). A nice formula :

cij = vol(V )(ei − ej)
TL†(ei − ej)

where L† is psudo-inverse of L.
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Ginzburg-Landau Segmentation

• Ginzburg-Landau functional :

GL(u) =
ε

2

∫
|∇u|2dx +

1

ε

∫
W (u)dx ,

where W (u) = 1
4
(u2 − 1)2 is a double well potential. This is used to

model superconductivity, two-phase flows, etc. The minimizer naturally

separates the “+1” phase from the “-1” phase.
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Ginzburg-Landau Gradient Flow

• Gamma convergence : GL(u)→Γ C |u|TV , widely used in
image segmentation.

• Minimizing E (u) = GL(u) + λF (u, u0) (F is data fidelity) is
usually driven by a gradient flow :

ut = ε∆u − 1

ε
W ′(u)− λδF

δu
.

• Numerical PDE solver by convex splitting of
E (u) = Econvex − Econcave :

un+1 − un

∆t
= −δEconvex

δu
(un+1) +

δEconcave

δu
(un)

• Due to the Laplace operator (diagonalizable by Fourier
transform), this can be solved very efficiently using FFT and
iterated in spectral space
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Ginzburg-Landau Segmentation on Graphs

• Bertozzi and Flenner introduced modified GL functional on graph
G = (V ,E) :

E(u) =
ε

2
< u, Lu > +

1

4ε

∑
z∈V

(u2(z)− 1)2 +
∑
z∈V

λ(z)

2
(u(z)− u0(z))2,

where u is the labeling function
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Ginzburg-Landau Segmentation on Two-Moon Data
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