Examples of Graph Data

Zhen Zhang

Southern University of Science and Technology

Outlines

Graph Data

PageRank

Community Detection

Spectral Clustering

Some Graph Data

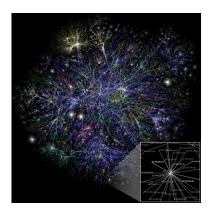


FIGURE: Graphical representation of webpage linkage

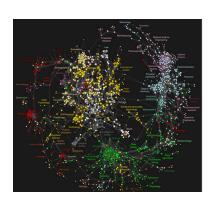


FIGURE: Graphical representation of relationships of scientific journals

Some Graph Data

FIGURE: Network of collaborations among rappers

FIGURE: Network of US airlines

Biological Graph Data



FIGURE: Gene Regulatory Network (GRN). The mRNA concentration follows a dynamic process (e.g. ODE) controlled by other related genes.

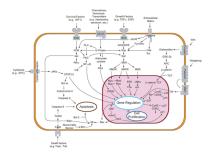


FIGURE: Cell Signal Transcriptional Network

Biological Graph Data

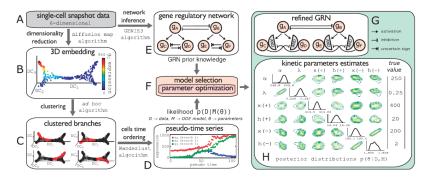


FIGURE: Framework of GRN produced from single-cell data.

Outlines

Graph Data

PageRank

Community Detection

Spectral Clustering

Linking Websites

- Scoring websites by counting number of links
- Rescoring (reweighting) by considering the importance of the websites

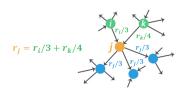
What sites link to pku.edu.cn?		What sites link to tsinghua.edu.cn?	
Total Sites Linking In	6,649	Total Sites Linking In	8,579
Site	Page	Site	Page
1. baidu.com	bdl.baidu.com/publication.html [®]	1. yahoo.com	travelinspirations.yahoo.com/post/id/ 🔗
2. msn.com	msn.com/de-at/nachrichten/wissenundtec	2. baidu.com	fieba.baidu.com/f?ie=utf-8&kw=清华大学 @
3. qq.com	edu.qq.com/bschool ^{gp}	3. msn.com	msn.com/en-us/travel/tripideas/the-bes @
4. hupu.com	bbs.hupu.com/14788328.html ₽	4. yandexru	ftp.yandex.ru/debian/README.mirrors.ht
5. 163.com	biz.163.com ∰	5. qq.com	city.qq.com @

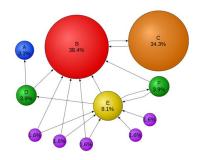
Scoring the Pages

Ranking the webpage j by computing r_j :

$$r_j = \sum_{i o j} rac{r_i}{d_i}, ext{(stream equation)}$$

where d_i is the out-degree of freedom of node i





Eigenvalue Problem

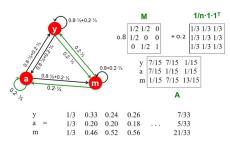
- Mr = r
- Use power method to solve for $\mathbf{r} = \lim_{t \to \infty} \mathbf{r}^{(t)}$:
 - 1. Initialization : $\mathbf{r}^{(0)} = (\frac{1}{N}, \dots, \frac{1}{N})^T$
 - 2. Iteration : $\mathbf{r}^{(t+1)} = \mathbf{M}\mathbf{r}^{(t)}$
 - 3. Stopping rule : $\|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}\| \leq \epsilon$.
- Random walk interpretation : $\mathbf{r}^{(t)} = (r_i^{(t)})_i$ is a probability distribution, where $r_i^{(t)}$ represents the probability that the explorer stays in the webpage i at time t; he randomly choose the next webpage according to the probability indicated by the matrix \mathbf{M} .
- This produces a Markov chain. And r is its stationary distribution if M is irreducible and non-periodic by Perron-Frobenius theory.

Google PageRank

 To avoid spider traps (out-link absorbed by a small subset) and dead ends (no out-link), Google introduced the random page transition (Brin-Page,98):

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

• $\mathbf{A} = \beta \mathbf{M} + (1 - \beta) \frac{1}{N} \mathbf{1} \mathbf{1}^T$ is irreducible and non-periodic



Outlines

Graph Data

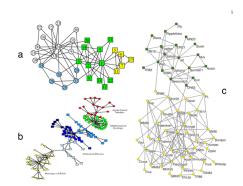
PageRank

Community Detection

Spectral Clustering

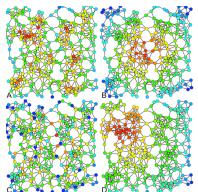
Community Detection

- Club organization from individuals (karate club)
- Collaboration network
- Social behavior of zebra



Centrality (Geometry of the Graph)

- Degree (or normalized by the total number of vertices) centrality: the number of edges linking the node
- Farness and closeness centrality, harmonic Centrality
- Betweenness centrality: the number of shortest paths passing through the current node
- Eigenvector centrality : r in PageRank



Community Detection Algorithms

- Hierarchical clustering based algorithms :
 - Girvan-Newman Algorithm
 - Improved by Newman's fast algorithm : A concept of "modularity" Q is introduced, agglomerate the subsets by maximizing ΔQ
- Fast Unfolding by V. D. Blondel, implemented in Gephi

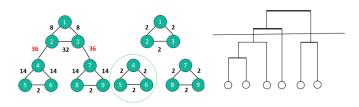


FIGURE: Left: Girvan-Newman; Right: Newman's fast algorithm

Outlines

Graph Data

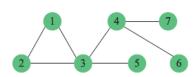
PageRank

Community Detection

Spectral Clustering

Graphs

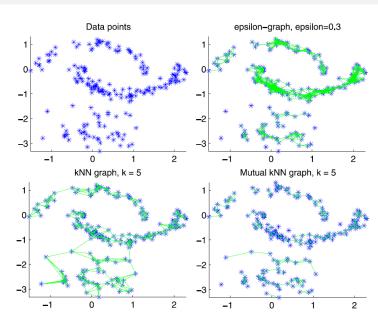
- A set of data points $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$, similarity s_{ij} or distance d_{ij}
- Graph G = (V, E), where $V = \{v_i\}_{i=1}^n$ with each v_i representing a sample \mathbf{x}_i
- v_i and v_j are connected $(w_{ij} > 0)$ if $s_{ij} > \epsilon$ where $\epsilon \geqslant 0$ is a threshold; then the edge is weighted by $w_{ij} = s_{ij}$
- Undirected graph $w_{ij} = w_{ji}$, adjacency matrix $W = \{w_{ij}\}$
- Degree of v_i : $d_i = \sum_{j=1}^n w_{ij}$; $D = \operatorname{diag}(d_1, \ldots, d_n)$



Similarity Graphs

- ϵ -neighborhood graph : v_i and v_j are connected if $d(x_i, x_j) < \epsilon$; unweighted graph ; $\epsilon \sim (\log n/n)^p$; difficult to choose ϵ for data on different scales
- k-nearest neighbor graph : connect v_i to v_j if v_j is among the k-nearest neighbors of v_i , directed graph; connect v_i and v_j if v_i and v_j are among the k-nearest neighbors of each other, mutual k-nearest neighbor graph, undirected; $k \sim \log n$
- Fully connected graph: connect all points with positive similarity with each other; model local neighborhood relationships; Gaussian similarity function $s(x_i, x_j) = \exp(-\|x_i x_j\|^2/(2\sigma^2))$, where σ controls the width of neighborhoods; adjacency matrix is not sparse; $\sigma \sim \epsilon$

Similarity Graphs



Graph Laplacian

- Unnormalized graph Laplacian : L = D W
 - Has 1 as an eigenvector corresponding to the eigenvalue 0
 - Symmetric and positive definite : $\mathbf{f}^T \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j} w_{ij} (f_i f_j)^2$
 - Non-negative, real-valued eigenvalues $0 = \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$
 - The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbf{1}_{A_1}, \dots, \mathbf{1}_{A_k}$, where A_1, \dots, A_k are k connected components in the graph
- Normalized graph Laplacians :
 - Symmetric Laplacian : $L_{sym} = D^{-1/2}LD^{-1/2}$
 - Random walk Laplacian : $L_{rw} = D^{-1}L$
 - Both have similar properties as L

Spectral Clustering

• Graph cut : segment G into K clusters A_1, \ldots, A_K , where $A_i \subset V$, this is equivalent to minimize the graph cut function

$$cut(A_1,\ldots,A_K)=\frac{1}{2}\sum_{k=1}^K W(A_k,\bar{A}_k)$$

where $W(A, B) = \sum_{i \in A, j \in B} w_{ij}$. Trivial solution consists of a singleton and its complement

- RatioCut : $RatioCut(A_1, ..., A_K) = \frac{1}{2} \sum_{k=1}^K \frac{W(A_k, \bar{A}_k)}{|A_k|}$, where |A| is the number of vertices in A
- Normalized cut : $Ncut(A_1, ..., A_K) = \frac{1}{2} \sum_{k=1}^K \frac{W(A_k, \bar{A}_k)}{vol(A_k)}$, where $vol(A) = \sum_{i \in A} d_i$; it is NP-hard

Relaxation of RatioCut to Eigenvalue Problems with K=2

- $\min_{A \subset V} RatioCut(A, \bar{A})$
- Binary vector $f = (f_1, \dots, f_n)^T$ as indicator function : $f_i = \begin{cases} \sqrt{|\bar{A}|/|A|}, & \text{if } v_i \in A \\ -\sqrt{||A|/\bar{A}|}, & \text{if } v_i \in \bar{A} \end{cases}$
- $f^T L f = |V| \cdot RatioCut(A, \bar{A}), \sum_{i=1}^n f_i = 0$, and $||f||_2^2 = n$
- Relax f to be real-valued : $\min_{f \in \mathbb{R}^n} f^T L f$, subject to $f \perp \mathbf{1}$ and $\|f\|_2 = \sqrt{n}$
- By Rayleigh-Ritz theorem, the solution f is the eigenvector corresponding to the second smallest eigenvalue of L
- Cluster $\{f_i\}_{i=1}^n$ to two groups C and $\bar{C}: v_i \in A$ if $f_i \in C$, and else $v_i \in \bar{A}$

RatioCut

- Binary vector $h_j = (h_{1j}, \dots, h_{nj})^T$, $j = 1, \dots, K$, as indicator function : $h_{ij} = \begin{cases} 1/\sqrt{|A_j|}, & \text{if } v_i \in A_j \\ 0, & \text{otherwise} \end{cases}$
- $h_j^T L h_j = Cut(A_j, \overline{A}_j)/|A_j|, H = (h_1, \dots, h_K) \in \mathbb{R}^{n \times K},$ $RatioCut(A_1, \dots, A_K) = Tr(H^T L H), H^T H = I$
- Relax $H: \min_{H \in \mathbb{R}^{n \times K}} \operatorname{Tr}(H^T L H)$, subject to $H^T H = I$
- Solution : the first K eigenvectors of L as columns
- Cluster the rows of H to K groups

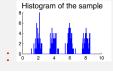
Ncut

- Replacing $|A_j|$ by $vol(A_j)$, the same argument for the relaxation of Ncut : $\min_{H \in \mathbb{R}^{n \times K}} \mathrm{Tr}(H^T L H)$, subject to $H^T D H = I$
- Solution : the first K eigenvectors of L_{rw} as columns

Spectral Clustering Algorithm

- Input : Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters
- Output : Clusters A_1, \ldots, A_K of indices of vertices
- Algorithm :
 - 1. Construct a similarity graph G = (V, E) with weighted adjacency matrix W
 - 2. Compute the unnormalized graph Laplacian L or normalized graph Laplacian L_{sym} or L_{rw}
 - 3. Compute the first K eigenvectors $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K] \in \mathbb{R}^{n \times K}$
 - 4. In the case of L_{sym} , normalize the rows of U to norm 1; for the other two cases, skip this step
 - 5. Let $\mathbf{y}_i \in \mathbb{R}^K$ be the i-th row of \mathbf{U} , use K-means to cluster the point set $\{\mathbf{y}_i\}_{i=1}^n$ into clusters C_1, \dots, C_K
 - 6. $A_k = \{i | y_i \in C_k\}$

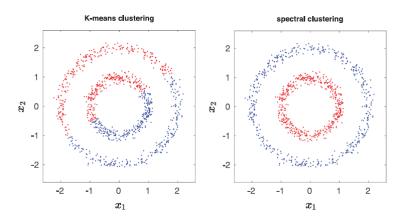
Mixture of 4 Gaussians on \mathbb{R} :





Interpretations

• Usually better than K-means



Random Walks Point of View

- $P = D^{-1}W$ can be interpreted as transition matrix of a Markovian random walk, which possesses a unique stationary distribution if the graph is connected and non-bipartite.
- $L_{rw} = I P \Rightarrow \lambda(L_{rw}) = 1 \lambda(P)$
- A probability viewpoint of Ncut : for a random walk $(X_t)_t$ starting with X_0 in the stationary distribution,

$$Ncut(A, \overline{A}) = P(X_1 \in \overline{A} | X_0 \in A) + P(X_1 \in A | X_0 \in \overline{A}).$$

Minimizer of Ncut gives a segmentation of the graph such that a random walk seldom transitions between A and \bar{A}

 Commute distance: c_{ij} measures the expected time it takes the random walk to travel from vertex i to vertex j and back. Some better properties than shortest path (geodesics). A nice formula:

$$c_{ij} = vol(V)(e_i - e_j)^T L^{\dagger}(e_i - e_j)$$

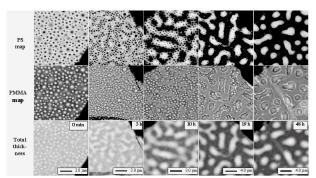
where L^{\dagger} is psudo-inverse of L.

Ginzburg-Landau Segmentation

Ginzburg-Landau functional :

$$GL(u) = \frac{\epsilon}{2} \int |\nabla u|^2 dx + \frac{1}{\epsilon} \int W(u) dx,$$

where $W(u) = \frac{1}{4}(u^2 - 1)^2$ is a double well potential. This is used to model superconductivity, two-phase flows, etc. The minimizer naturally separates the "+1" phase from the "-1" phase.



Ginzburg-Landau Gradient Flow

- Gamma convergence : $GL(u) \rightarrow_{\Gamma} C|u|_{TV}$, widely used in image segmentation.
- Minimizing $E(u) = GL(u) + \lambda F(u, u_0)$ (F is data fidelity) is usually driven by a gradient flow :

$$u_t = \epsilon \Delta u - \frac{1}{\epsilon} W'(u) - \lambda \frac{\delta F}{\delta u}.$$

• Numerical PDE solver by convex splitting of $E(u) = E_{convex} - E_{concave}$:

$$\frac{u^{n+1}-u^n}{\Delta t} = -\frac{\delta E_{convex}}{\delta u}(u^{n+1}) + \frac{\delta E_{concave}}{\delta u}(u^n)$$

 Due to the Laplace operator (diagonalizable by Fourier transform), this can be solved very efficiently using FFT and iterated in spectral space

Ginzburg-Landau Segmentation on Graphs

Bertozzi and Flenner introduced modified GL functional on graph G = (V, E):

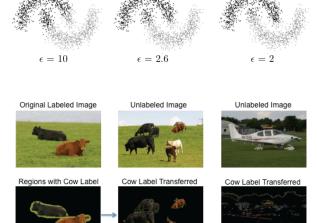
$$E(u) = \frac{\epsilon}{2} < u, Lu > + \frac{1}{4\epsilon} \sum_{z \in V} (u^2(z) - 1)^2 + \sum_{z \in V} \frac{\lambda(z)}{2} (u(z) - u_0(z))^2,$$

where u is the labeling function

Convex Splitting for the Graph Laplacian

- 1. Input \leftarrow an initial function u_0 and the eigenvalue-eigenvector pairs $(\tilde{\lambda}_k, \phi_k(x))$ for the graph Laplacian L_{\bullet} from (2.6).
- 2. Set convexity parameter c and interface scale ϵ from (3.2).
- 3. Set the time step dt.
- 4. Initialize $a_k^{(0)} = \int u(x)\phi_k(x) dx$.
- 5. Initialize $b_k^{(0)} = \int [u_0(x)]^3 \phi_k(x) dx$.
- 6. Initialize $d_k^{(0)} = 0$.
- 7. Calculate $\mathcal{D}_k = 1 + dt \ (\epsilon \ \tilde{\lambda}_k + c)$.
- 8. For n less than a set number of iterations M(a) $a_k^{(n+1)} = \mathcal{D}_k^{-1} \left[\left(1 + \frac{dt}{\epsilon} + c \, dt \right) \, a_k^{(n)} \frac{dt}{\epsilon} b_k^{(n)} dt d_k^{(n)} \right],$
 - (b) $u^{(n+1)}(x) = \sum_k a_k^{(n+1)} \phi_k(x)$,
 - (c) $b_k^{(n+1)} = \int [u^{(n+1)}(x)]^3 \phi_k(x) dx$,
 - (d) $d_h^{(n+1)} = \int \lambda(x) (u^{(n+1)}(x) u_0(x)) \phi_k(x) dx$.
- 9. end for
- 10. Output \leftarrow the function $u^{(M)}(x)$.

Ginzburg-Landau Segmentation on Two-Moon Data



References

- A. Ocone, L. Haghverdi, N. S. Mueller, and F. J. Theis, "Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data," Bioinformatics 31: 89-96, 2015.
- U. von Luxburg, "A tutorial on spectral clustering," Stat. Comput. 17:395-416, 2007.
- A. L. Bertozzi and A. Flenner, "Diffuse Interface Models on Graphs for Classification of High Dimensional Data," SIAM Review 58(2):293-328, 2016.
- M. Schaub, A. R. Benson, P. Horn, G. Lippner, and A. Jadbabaie, "Random Walks on Simplicial Complexes and the Normalized Hodge I-Laplacian," SIAM Review 62(2):353 391, 2020.