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Some Graph Data

FI1GURE: Graphical representation of
F1GURE: Graphical representation of relationships of scientific journals
webpage linkage



Some Graph Data

CROSS-GENRE COLLABORATIONS BY RAPPER
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FI1GURE: Network of US airlines

FIGURE: Network of collaborations
among rappers



Biological Graph Data

F1GURE: Gene Regulatory Network
(GRN). The mRNA concentration
follows a dynamic process (e.g.
ODE) controlled by other related
genes.

F1GURE: Cell Signal Transcriptional
Network



A single-cell snapshot data
6-dimensional
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FiGURE: Framework of GRN produced from single-cell data.
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Linking Websites

e Scoring websites by counting
number of links s Ol:/%

o Rescoring (reweighting) by 5}

considering the importance
of the websites =2
PageRank
What sites link to pku.edu.cn? What sites link to tsinghua.edu.cn?

Total Stes Unking In 6,649 Total Sites Linking In 8,579




Scoring the Pages

Ranking the webpage j by
computing r; :

r= Z gi, (stream equation)

i—j

where d; is the out-degree of
freedom of node i

A

/3
ri=r;/3+r,/4 j§ \1,/)3




Eigenvalue Problem

Mr=r
Use power method to solve for r = lim r(t)
t—00
1. Initialization : r® = (4, ... 1)
2. lteration : r(tt1) = My(D)

3. Stopping rule : [[r(t+1) — ¢(1))
r

| <e
Random walk interpretation : r(t) = (ri(t)),- is a probability
(t)

distribution, where r; "’ represents the probability that the
explorer stays in the webpage / at time t; he randomly choose
the next webpage according to the probability indicated by the

matrix M.

This produces a Markov chain. And r is its stationary
distribution if M is irreducible and non-periodic by
Perron-Frobenius theory.



Google PageRank

e To avoid spider traps (out-link absorbed by a small subset)
and dead ends (no out-link), Google introduced the random
page transition (Brin-Page,98) :

5= 3 6+ (- Ay

i—j

o A= M+ (1—B)4117 is irreducible and non-periodic

M 1117
[1212 0 131313
0812 0 0| *02(I3131/3
012 1 1313173
) ) y |715 7115 115
9802% 31715 1/15 1/15
9, m|1/15 7/15 13/15
Qo # A
y 13 033 024 026 7/33
a = 13020 020 018 ... 533

m 13046 052 0.56 21/33
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Community Detection

e Club organization
from individuals
(karate club)

e Collaboration network

e Social behavior of
zebra




Centrality (Geometry of the Graph)

Degree (or normalized by the total number of vertices) centrality : the
number of edges linking the node

Farness and closeness centrality, harmonic Centrality

Betweenness centrality : the number of shortest paths passing through
the current node

Eigenvector centrality : r in PageRank




Community Detection Algorithms

e Hierarchical clustering based algorithms :

e Girvan-Newman Algorithm

e Improved by Newman's fast algorithm : A concept of
“modularity” Q is introduced, agglomerate the subsets by
maximizing AQ

Fast Unfolding by V. D. Blondel, implemented in Gephi

L]

FIGURE: Left : Girvan-Newman ; Right : Newman'’s fast algorithm
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Graphs

e Graph G = (V,E), where V = {v;}"_, with each v;
representing a sample x;

e v; and v; are connected (wj; > 0) if s;j > e where e > 0 is a
threshold ; then the edge is weighted by w;; = sj;
¢ Undirected graph wj; = wj;, adjacency matrix W = {w;;}

o Degree of v; : dj = 3 7, w;; D = diag(dy, ..., dn)
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A set of data points {x1,...,X,}, similarity s; or distance dj;
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Similarity Graphs

e e-neighborhood graph : v; and v; are connected if
d(xi, xj) < €; unweighted graph; e ~ (log n/n)P ; difficult to
choose € for data on different scales

e k-nearest neighbor graph : connect v; to v; if v; is among the
k-nearest neighbors of v;, directed graph; connect v; and v; if
vi and v; are among the k-nearest neighbors of each other,
mutual k-nearest neighbor graph, undirected; k ~ logn

e Fully connected graph : connect all points with positive
similarity with each other; model local neighborhood
relationships ; Gaussian similarity function
s(xi, x;) = exp(—||x; — x;||?/(202)), where & controls the
width of neighborhoods; adjacency matrix is not sparse; o ~ ¢



Similarity Graphs

Data points epsilon—graph, epsilon=0.3

(=]
-

-1

-2

-3

-

0y~




Graph Laplacian

e Unnormalized graph Laplacian : L=D — W
Has 1 as an eigenvector corresponding to the eigenvalue 0
Symmetric and positive definite : f7Lf = %Z,-J wi(f; — £)?
Non-negative, real-valued eigenvalues 0 = A\ < Ap < -+ < A\,
The eigenspace of eigenvalue 0 is spanned by the indicator
vectors 14,,...,1,,, where Ay, ..., Ak are k connected
components in the graph
e Normalized graph Laplacians :

e Symmetric Laplacian : Ly, = D~Y/2LD~1/2

e Random walk Laplacian : L,, = D71L

e Both have similar properties as L



Spectral Clustering

e Graph cut : segment G into K clusters Ay, ..., Ak, where
A; C V, this is equivalent to minimize the graph cut function

[Ey

K
Cut(Al,..., ZW AkaAk
k:l

where W(A, B) = }_;c 4 jcp Wi Trivial solution consists of a
singleton and its complement

K _
o RatioCut : RatioCut(A1,...,Ax) =3 > W, where |A|

x
Il
-

is the number of vertices in A

K -
o Normalized cut : Ncut(Ay,...,Ax) =3 > %, where
k=1

vol(A) = > icadi; it is NP-hard



Relaxation of RatioCut to Eigenvalue Problems with K = 2

e min RatioCut(A, A)
ACV

e Binary vector f = (f1,...,f,) as indicator function :
Al/|A], ifv, € A
—VIIAl/A], ifv, € A

o fTLf =|V|- RatioCut(A,A), 3. f, =0, and Ifl5=n
i=1

P =

e Relax f to be real-valued : fm]lRp FTLF, subject to f L 1 and
6 n

Ifll=+/n

¢ By Rayleigh-Ritz theorem, the solution f is the eigenvector
corresponding to the second smallest eigenvalue of L

e Cluster {fi}f:l to two groups C and C : v; € Aif f; € C, and
else v € A



Relaxation of RatioCut and Ncut with general K

e RatioCut

e Ncut

Binary vector hj = (hyj,...,hy;)7, j=1,..., K, as indicator

b — 1/\/|Aj|, if V,‘GAJ'

Y 0, otherwise
hl Lhj = Cut(A;, Aj)/|Ajl, H=(h1,..., hg) € R™K,
RatioCut(Ay, ..., Ax) = Te(HTLH), HTH =1

Relax H: min Tr(HTLH), subject to HTH = I
HGR"X
Solution : the first K eigenvectors of L as columns

Cluster the rows of H to K groups

function :

Replacing |Aj| by vol(A;), the same argument for the

relaxation of Ncut :  min KTr(HTLH), subject to HTDH = |
HeRnX

Solution : the first K eigenvectors of L,, as columns



Spectral Clustering Algorithm

e Input : Similarity matrix S € R"*", number k of clusters

e Output : Clusters A, ..., Ak of indices of vertices
o Algorithm :
1. Construct a similarity graph G = (V, E) with weighted
adjacency matrix W
2. Compute the unnormalized graph Laplacian L or normalized
graph Laplacian Ly, or Ly,
3. Compute the first K eigenvectors U = [uy, ..., ux] € R™K
4. In the case of Ly, normalize the rows of U to norm 1; for the
other two cases, skip this step
5 Lety; € RX be the i-th row of U, use K-means to cluster the
point set {y;}7_; into clusters Cy,..., Cx
6. Ay = {i|y; S Ck}



norm, knn

knn

unnorm,

norm, full graph

unnorm, full graph

Mixture of 4 Gaussians on R :

Eigenvalues

Histogram of the sample
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Interpretations

e Usually better than K-means

K-means clustering spectral clustering

T2
o

-

-2 -




Random Walks Point of View

P = D 'W can be interpreted as transition matrix of a Markovian
random walk, which possesses a unique stationary distribution if the
graph is connected and non-bipartite.

Lw=1—P=XLw)=1-X(P)
A probability viewpoint of Ncut : for a random walk (X:): starting with
Xo in the stationary distribution,

Ncut(A, A) = P(X1 € A|Xo € A) + P(X1 € A|X € A).

Minimizer of Ncut gives a segmentation of the graph such that a random
walk seldom transitions between A and A

Commute distance : ¢;j measures the expected time it takes the random
walk to travel from vertex i to vertex j and back. Some better properties
than shortest path (geodesics). A nice formula :

ci = vol(V)(ei — &) LT (e — ¢)

where LT is psudo-inverse of L.



Ginzburg-Landau Segmentation

® Ginzburg-Landau functional :

GL(u) = §/|Vu|2dx+%/W(u)dx,

where W(u) = 1(u® — 1)* is a double well potential. This is used to

model superconductivity, two-phase flows, etc. The minimizer naturally
separates the “+1" phase from the “-1" phase.
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thick-
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Ginzburg-Landau Gradient Flow

Gamma convergence : GL(u) —r C|u|ty, widely used in
image segmentation.
Minimizing E(u) = GL(u) + AF(u, up) (F is data fidelity) is
usually driven by a gradient flow :

OF

1
ur = eAu — EW,(U) - )\E'

Numerical PDE solver by convex splitting of
E(u) = Econvex - Econcave

u —u” - (5EconveX(un+1) + M(un)

At T bu ou

Due to the Laplace operator (diagonalizable by Fourier
transform), this can be solved very efficiently using FFT and
iterated in spectral space



Ginzburg-Landau Segmentation on Graphs

® Bertozzi and Flenner introduced modified GL functional on graph
G=(V,E):

E(u) = % <u,Lu> +i Z(u2(z) -1+ Z %(u(z) — w(2))?,

zeV zeVv

where u is the labeling function

Convex Splitting for the Graph Laplacian

—_

. Input ¢ an initial function uo and the eigenvalue-eigenvector pairs
(Ak. @k (x)) for the graph Laplacian L¢ from (2.6).
. Set convexity parameter ¢ and interface scale e from (3.2).
. Set the time step dt.
. Tnitialize o\ = [ u(e)or(x) d.
. Tnitialize b = [[uo(x)]3éx(x) du.
. Tnitialize d\* = 0.
Calculate Dy = 1+ dt (€ \g + ¢).
. For n less than a set number of iterations M
(a) al"™™ =D [(1+ % ¢ e dt) o — 4 _ ardM],
(h) ul "*1 Ekuk (7k r),
() b D :f [+ (1) 3 (2) do,
(@) d"™ = [ M) (™D () — ug () dx(x) da.
. end for
10. Output  the function u®)(x).

N U e W

)

©




Ginzburg-Landau Segmentation on Two-Moon Data

e=10 e =26 €e=2

Original Labeled Image Unlabeled Image

Regions with Cow Label Cow Label Transferred Cow Label Transferred
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